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In this article we discuss new ideas regarding the effect of conical intersections on a multielectronic adiabatic
manifold of eigenfunctions: (a) The conical intersections are used to break up the Hilbert space into sub-
Hilbert spaces by demanding that these subspaces do not have common conical intersections with each other
(in other words electronic states belonging to different subspaces do not form conical intersections). (b) A
new concept, the topological spin, is introduced; it is shown that its value is closely related to the number of
(Jahn-Teller) conical intersections in a given sub-Hilbert-space and that the values of the components are
related to the possible number of electronic eigenfunctions that flip sign while surrounding the conical
intersections. (c) A geometrical description for the above-mentioned sign conversions is introduced, and it is,
also, shown that this description agrees nicely with the results obtained from the topological matrix D. This
geometrical, qualitative-type picture is supported by a quantitative analysis based again on the line integral.

. Introduction Landau-Zener (LZ) formuld@1! and the second is based on
o ) ) the Demkov approack.It is well-known that whereas the LZ-

In our recent publications was revealedl an interesting e interactions are strong enough to cause transitions between
relation between the electronic nonadiabatic coupling terms andyyq adiabatic states the Demkov-type interactions are usually
the diabatic potentials formed via the adiabatic-to-diabatic \yeak and affect the motion of the interacting molecular species
transformation (ADT). We found that if a certain electronic yg|atively slightly. The LZ situation is the one that becomes
manifold can be isolated from the full Hilbert space, then the e jaha-Teller conical intersection (Cl) in two dimensioks16
relevant ADT matrix, calculated along @osed contour in  \ye shall also include the RenneFeller parabolic intersection
configuration space (CS), ‘returns to itself’ to guarantee that (P)718although it is characterized by two interacting potential
resultingdiabatic potentials are uniquely defined in every point energy surfaces which behave quadratically (and not linearly
in CS. This finding, as derived for a general case, is interesting 55 in the Lz case) in the vicinity of the degeneracy point. The
as such, but surprising results are obtained for some simplified gjstinction between the (extended) LZ situation and the Demkov
models for which these findings led to ordinagyantization situation enables the rigorous construction of SHS as will be
conditionswith respect to nonadiabatic coupling terms, of the presented in the following section.

type intrqduced by Bohr and _Sommerfeld a”?“OSt a century‘ago. For the sake of completeness, we present, in sections Il and
Once this fundamental relation was established we were ableIV respectively the ADT20 matrix and the topological

to perform more detailed studies of topological effects within - 4y 1-3 \yhich contains the topological information related
molecular systems. In this respect topological effects are defined, 5 given closed contour.

as the numper of e_Iectronic eigenfunctions that flip sign while Another subject that will be discussed to some extent is the
the electronic malnlfolld 'trac.es:flclosed loop. o fact that the existence of Cls leads to a situation where
One of the main difficulties in molecular physics is to be knowledge of the electronic manifold is not sufficient to
able to define rigorous sub-Hilbert spaces (SHS). There were cparacterize a molecular system. The fact that Cls cause
several attempts to do that, but the borders of these SHSs wereg|ectronic eigenfunctions to be multivalued makes it necessary
rigorously, not satisfying.>¢ It is important to emphasize that 5 getermine the size of the relevant SHS and the number of
without being able to form finite SHSs, it is not only that the = ¢js it contains. This necessity leads to the introduction of a
study of topological effects will be harmed, but, in fact, the opojogical spin which is proposed for a further assignment of
entire field of molecular physics will be doomed. In the next he molecular system. This subject is discussed in section V
section we shall present a new approach which enables agnq jts geometrical interpretation in section VI. Section VIl is
rigorous study of topological effects, but we think that this geyoted to topological effects in case two Cls coincide, namely,
approach can be a solution for other purposes as well. when three surfaces have their Cls at the same point. Conclu-
In the study of (electronic) curve crossing problems one sions are given in the last section.

diStingUiSheS between a situation where two electronic curves, The Subject of t0p0|ogica| effects caused by electronic
E(R),j = 1, 2, approach each other at a pdiit= Ry so that  nonadiabatic coupling is not new and goes back to studies by
the differenceAE(R = Ry) = Ex(R=Ry) — Ei(R=Rg) =0 Longuet-Higgins and his colleagi#42 in particular to the
and a situation where the two electronic curves interact so thatHerzberg-Longuet-Higgins 1975 papé? Although this subject
AE(R) ~ const -0). The first case is usually treated by the attracted some attention for about a decakiebecame of minor
interest for chemists later on (although it attracted interest among
T Part of the special issue “Aron Kuppermann Festschrift”. physicists due to Berry’s seminal 1984 papér)t was only
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due to Kuppermann and his colleag¥es that this subject Ny
earned, recently, renewed attention. At the beginning of the
1990s, Kupperman et al. published their state-to-state integral
and differential cross sections for the various triatom hydrogenic
reactive systems, presenting the nuclear wave functions in terms 1

of antiperiodic basis sets. By doing that they showed that some 777
of these cross sections, at certain energies, are governed by N
topological effectg>

P+1

Il. Construction of Sub-Hilbert Spaces 2

In our recent articles we suggestetireconsidering the almost ~ coooe e e
well-established belief that the electronic manifold is an
unbreakable system of electronic adiabatic eigenfunctions which
form a full Hilbert spacé&® In general it may not be easy to p_{
contradict this claim because, indeed, almost every state interacts
with any other state to some extent. The question is only whether 1
we can distinguish between the intensity of the various Figure 1. Schematic picture describing the three consecutive sub-
interactions. In other words: is there a criterion according to Hilbert spaces, namely, th® (- 1)th, thePth, and the P + 1)th. The
which we can form subsets of functions that strongly interact dotted lines are separation lines.
with each other but interact rather “weakly” with the states i i . .
belonging to other subsets? Hence it was suggested to probe ' N€ Size of thé>th SHS is determined in such a way that the
the nonadiabatic coupling terms with the aim of finding such a loWwest (the first) state and the highest (Ngth) state do not
criterion. It turns out that such a criterion can be assumed, based®™m ClIs or Pls with the their corresponding neighbors
on whether twaconsecutie states do, or do not, form a Cl or ~ Pelonging to the R — 1)th SHS and theR + 1)th SHS,
a Pl (only consecutive states can form Cls and/or Pls). The two respe_ctlvely (see Figure 1). In other words the two nonadiabatic
types of intersections are characterized by the fact that the cOUPling terms
nonadiabatic coupling terms, at the points of the intersections, P-1p)
become infinite. (These points can be considered as the “black TN, 10 and 7)) 4)
holes” in molecular systems and it is mainly through these black
holes that electronic states “know” of each other.) Based on are assumed not to become singular in any point in CS.
what was said so far we shall, accordingly, form L SHSs of
varying sizesNp, P =1, ..., L. [ll. Adiabatic-to-Diabatic Matrix

Before we continue with the construction of the SHSs we |t \/as shown, employing projection operatérghat the

would like to make the following comment: Usually, when two  gorn—oppenheimer treatment yields for each SHS the following
given states form Cls and/or Pls, one thinks of isolated points gat of coupled adiabatic Schroedinger equations (SE):
in CS. In fact, CI/Pls are not isolated but form (finite or infinite)

seams which “cut” through the molecular CS. However, since
our studies are carried out for planes, these planes, usually,
contain isolated CI/PI points only.
We start by introducing the electronic nonadiabatic coupling where u® is a diagonal matrix which contains the above-
termsz;, defined as mentioned\p adiabaticpotential energy surfaces abé® is a
column vector which contains the relevant adiabatic nuclear
7, = G| Vg0 (1) wave functionsy;(P); j = 1, ...,Np (see also refs 5 and 6).

To study the topological features of tRéh SHS, it is essential
wheregy, k =i, | is thekth electronic adiabatic eigenfunction first to obtain the adiabatic-to-diabatic transformation (ADT)
andV is the grad operator (the bra and the ket notation is applied matrix A®): Thus if ®®) is the column vector which contains
for integration with respect to the electronic coordinates). In the diabatic nuclear wave functions (these are the solutions to
what follows we distinguish between two kinds of nonadiabatic the corresponding diabatic SE), th&P-matrix is defined

VPO (@ —pwP=0 ()

coupling terms: (a) intra nonadiabatic coupling teriyi® which through the relation
are formed between two eigenfunctions belonging to a given
SHS, namely, thé@th SHS P = APp® (6)
Tij(P) — DL(P)IVCJ-(P)D =1, ..N, 2) One can show, again employing projection operators, that for

each separate SHS, the correspondignatrix fulfills the

and (b) inter nonadiabatic coupling termg® which are  following first-order differential equatiof!®:20

formed between two eigenfunctions belonging to two different —
SHSs, namely, th€th SHS and th&th SHS VA+TA=0 )

O o @ - . wherert is an antisymmetric matrix with the elements defined
T Y =UIVETD 1=1, 0N j=1,0,Ng (3) in eq 2. In what follows we drop the subscriptand discuss
one particular SHS of dimensidd. (Since many referees and
The Pth SHS is defined through the following requirements: others questioned the existence of a solution for this equation
Each pair of consecutive states, namely, tith and the we presented in Appendix | of ref 38 a detailed discussion on
(j + 1)th, belonging to th&@th SHS, form, at least at one point  this subject. Still for the sake of completeness we say the
in CS, a C* 16 or a P|17:18 following: A valid solution for this equation can be derived
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along a given contour, if and only if along this contour the Following eq 11 this requirement implies that for every point
corresponding Curl conditidfis fulfilled. In all our theoretical S we have
publications it was assumed that this condition is satisfied)
The more relevant feature of thematrix, for our purposes, AT(O)u(O)A(O) = AT(ﬁ)u(ﬁ)A(,B) (14)
is the fact that it also transforms the electronic adiabatic basis

set,C, to the electronic diabatic basis sgtl® Next we introduce another transformation matiBs, defined

as
=A 8

PR © B=A($)A'(0) (15)
In what follows we show that topological effects become . .
apparent through this transformation. which, for everys; and a given patfi’, connects betweeu()

To solve eq 7 one has to assume a path (contdymnd a  andu(0):
solution will be obtained for this particular path.dinds, are . +
two points on this path, we find fok(s) the result:—3.27.28 u() = Bu(0)B (16)
< TheB-matrix is, by definition, a unitary matrix (it is a product
A(s) =exp (- fSOdS'T)A(SO) 9 of two unitary matrixes) and at this stage, except for being

dependent o' and, eventually, onesit is rather arbitrary. In
where & is a differential vector along the path, the dot stands What follows we shall derive some featuresif
for a scalar product, and(sy) is a given initial or boundary Since the adiabatic eigenvalues are uniquely defined at each
value. The solution in eq 9 is well-defined along this particular pointin CS, we havei(0) = u(8), and therefore eq 16 implies
path as long as the elements of thematrix are analytic the existence of the following commutation relation:
functions in the close vicinity of the path. Next we introduce

the D-matrix defined as3 [B,u(0)] =0 a7)
Equation 17 yields the following system of equations between
D= exp(—frdS'T) (10) the adiabatic eigenvalueg(0) and theB-matrix elements:
which by its definition is only dependent on the pdthAs Z(Bkj* By — 9,)u(0) =0 (18)
=

will be shown, this matrix contains the topological features of
the system and was therefore is termedttpmlogicalmatrix 3

The next subject is the diabatic potential matiks) that
follows from the ADT given in eq 7: namely,

Equation 18 has to hold at every arbitrary poirg s
(=14 = 0) on the pathI' and for an essential, arbitrary set of
nonzero adiabatic eigenvalueg(s); j = 1, ...,N. Due to the
arbitrariness ofy (and therefore also of the sefsy)), eq 18
can be satisfied, if and only if, thB-matrix elements fulfill the

whereA' is the complex conjugate of A. The main feature that "elation
will be used in the ongoing presentation is the uniqueness of *R — S -
W(s). Thus it is assumed that at each point in B&s) attains BBy =0y I k=M (19)
one single value, or, in other word¥(s) is uniquely defined or
throughout CS.
As a final point in this section and mainly for the sake of By = 9y exp(7,) (20)
completeness we shall introduce the diabatic SE. ReplaBing
in eq 5 by® (see eq 6) and recalling eq 7 yield the diabatic Thus B is a diagonal matrix which contains in its diagonal

W(s) = AT(u()A(s) (11)

SE: complex numbers whose norm is 1 (this derivation holds as
long as the adiabatic potentials are singled-valued, i.e., nonde-
_LVZq) +(W —E)®=0 (12) generate along the pall’?. In case of real eigenfunctions the
2m matrix B contains in its diagonaH{1)s and ¢1)s. The number

of (—1)s is the main subject of the article.

whereW is a full potential matrix. It is important to emphasize Recalling eq 15, we obtain that

that eq 12 can be solved only whevi(s) is uniquelydefined
throughout CS. A(S) = BA(0) (21)

IV. Topological Matrix Equation 21 is similar to eq 9; it becomes identical if we close
the contour so that the upper limit of the integral becomes
and identifyB with D as defined in eq 10. Therefore the features
just derived forB, namely, its being diagonal, having onlt1)s

and (1)s in the diagonal, and in particular fulfilling eq 21,
will apply to D as well. In addition, based on its derivation in
the previous section, we know th& depends only on the
contour along which it is calculated but does not depend on
any particular point on this contour. Rewriting eq 21 gives

The D-matrix is defined in eq 7 and it is noticed that its
definition is based on a closed pakh Thus let us consider
such a path, defined in terms of a continuous paranmigteo
that the starting poindy of the path is af = 0. Next we define
S as the value attained yonce the path completes a full cycle
and returns to its starting point. Thus, for instance, in case of a
circle, A is an angle ang@ = 27.1.2

Having introduced these definitions we can now express our

assumption regarding the uniqueness\s,s) in the following A(B) = DA(0) (22)
way: Ateach points, in CS the diabatic potential matrit/(4)
(=W(s,g)) has to fulfill the relation: It is noticed thatD transformsA(0) to A at the same point,

namely,A(f) as calculated from eq 7 (or eq 9) following the
WA =0)=W@=p) (13) integration along the same closed contour. However, sihce
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does not have to be the unit matrix and siice 0 andA = 8
describe the same point in CS, eq 22 implies #E) is not
necessarily uniquely defined in CS. This, eventually, could be
an unpleasant situation, but since the diabatic potential matrix
W(s), for which the diabatic SE (see eq 12) has to be solved,
is uniquely defined in space, no difficulties are expected.

Our next task is to reveal the meaning efl()s in the diagonal
of matrix D. For that purpose we consider eq 8 and assume
that A(so) is the unit matrix. Replacing, in eq 8, matrx by
matrix D, namely,

x=DC (8)
yields the followingy-functions:
==+8 1=1,..,N (23)

namely,D transforms the originat-adiabatic eigenfunctions
back on themselves but with some of the functions flipping their
sign. It is to be remembered that diabatic eigenfunctions are
single valued in CS. Moreover, D containsK (—1)s in its
diagonal then, due to the transformation in égk8functions

flip sign. Making the electronic manifold trace different (closed)
contours several things can happen: (1) A different number of
functions may flip signs, or, in other words,may vary. (2) It
also may happen, wheth#&rvaries or not, that aifferentset

of functions may flip sign. Thus the conclusion is that altogether
the electronic manifold might be multivalued and the rate of

increase in the multivaluedness, as will be discussed later,

depends on the number of Cls.

The fact that an adiabatic electronic wave function flips its
sign while following a closed contour is called a topological
effect. Since theD-matrix contains the information regarding
the number of functions that flip sign, the-matrix will be
defined as theopological matrix

V. Derivation of the Topological Matrix

To derive the topological matrix we first have to obtain the
ADT matrix, A, as introduced in eq 8. Sinceis a real unitary

matrix it can be expressed in terms of cosine and sine functions

of given angleg%2°:3°We shall, first, briefly consider the two
special cases withl = 2 and 3.
In case ofN = 2 the matrixA? takes the form

cosy siny
@ _ 12 12
A= (—sin Y12 005y12) (24)
wherey,, the ADT angle, can be shown toe
S
Vi2= [, 11AS) dS (25)

Designatingy, as the value of 12 for a closed contour, namely,

03, = frl) o8 (25)

the correspondin@®® matrix becomes accordingly:
@ _ [COS0y, sinoy, !
D= (—sin 04, COSQ, (24)

SinceD® has to be, for any closed contour, a diagonal matrix
with (+1)s and €1)s, it is seen that;, = nr wheren is either
odd or even (or zero) and therefore the only two possibilities
for D@ are as follows:
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D@ = (1)1 (26)
wherel is the unit matrix. The case whenas an odd number

is recognized as the Jahiieller casé316 The reason is that

in this caseK = 2, and therefore, according to our analysis in
the previous section, the two eigenfuncti@gasandZ; flip signs

for this particular closed contoé From other numerous studies

it is well-known that this happens when the contour surrounds
a conical intersection (for a detailed study on this subject see
ref 31). In case the contour does not surround ans? Gt
surrounds a P{,1°n must be an even number (or zero) and no
eigenfunction flips its sign.

The case oN = 3 is somewhat more complicated because
the corresponding orthogonal matrix is expressed in terms of
three angles, namely,», Y13, andy»s. This case was recently
studied by u¥ in detail and here we will briefly repeat the main
points.

The matrixA®) is presented as a product of three rotation
matrixes of the form

COSy;3 0 Siny;s

13(3)(7/13) =10 . 10
—SINy.;3 0 COSYq3

(27)

(the other two, namelyQ::3)(y12) and Q23®)(y23), are of a
similar structure with the respective cosine and the sine functions
at the appropriate positions) so ths takes the form

3 3 3 3
AB = le( )st( )le( )

or, following the multiplication, the more explicit form

(28)

C1C13 ~ S1553813 15523 C15513 T C1o5sCas
A(3) = | ~S12C13 ~ C1o55513 C1olr3 ~Si5813 T C1o5sCis

- - c
Co3S;3 S Gl (29)

Here ¢; = cosf;) and s; = sin(yj). The three angles are
obtained by solving the following three coupled first-order
differential equations, which follow from eq?2P:2°

Vy12= =Ty, — tany,5(—713C0Sy 1, + Tp3SiNy )

Vya3= —(13C08y1, + 1,3 sinyy,)

Vyiz= _(003723.)71(_713 COSY 1, + Tp3SiNY,) (30)

These equations were integrated, for a model potential and for
fixed values of the radial coordinape along the angular interval
0 < ¢ = 2. The ¢-dependeny’s, for various valuep and
Ae are presented in Figure 2Ac is the potential-energy shift
defined as the shift between the two original coupled adiabatic
states and a third state, at the origin, ices 0. In caseAe =
0.0 all three states become degenerate at the origin. The relevant
D®-matrix is obtained fromA®) by replacing, in eq 29, the
angley; with oj; where

. = yii(e = 27) (31)
As is noticed from Figure 2 the values @f are either zero or
n. A brief analysis of eq 29, for these valuesogf shows that
D® is a diagonal matrix with two-1)s and one-1) in the
diagonal. This result can be generalized in the following way:
Since theD®)-matrix will become diagonal if and only if
(31)

. = T

1
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i features: (a) Evergiagonalelement contains at least one term
L N g which is a product of cosine functions only. (b) Every
om\/\m\ L off-diagonalelement is a summation of products of terms where
] e m each product contains at least one sine function. For a rigorous

L PR B proof see Appendix |. These two features will lead to conditions
' to be imposed on the variougj-angles to ensure that the
topological matrix, D), is diagonal (and all its diagonal
elements are of norm 1) as discussed in the previous section.

To obtain theyj-angles one usually has to solve the relevant
first-order differential equations of the type given in eq 30. Next,

Adiabatic-Diabatic Transformation Angle

nk like before, theajj-angles are defined as thg-angles at the
i . LM end of a closed loop. To obtain the matBXV all one has to
I, X\ do is to replace, in eq 33, the anglgsby the corresponding
e te o oo aj-angles. Sincd®™ has to be aliagonalmatrix with (+1)s
R R R and (~1)s in the diagonal, this can be achieved if and only if
0 all aj-angles are multiples of (see eq 3. It is straightforward
Figure 2. Three adiabatiediabatic-transformation angleg;(¢|p) to show that with this structure the elements) become
(obtained by solving egs 30) as a functigncalculated for different
values ofp (andA¢). Herep is a radial coordinate with respect to the N

assumed origin but serves as a parameter (not a variable) and all
calculations are done for fixeghvalues. As forAe, it is the potential-
energy shift defined as the shift between the two original coupled
adiabatic states and a third state, at the origin, p.e=,0. (In the case

Ae = 0.0, all three states are degenerate at the origin.) For more whereny are integers and we havg = ny. From eq 20 it is

Dii(N) = 0;| |cosay = 5"-(—1)2%‘i Mei=1,..,N (34)

Z

clarifications, see ref 33. (&) = 615, Ae = 0.0; (b) 6 = 015, Ac = noticed that along the diagonal & we may encounteK

0.05; ()0 = 012, Ae = 0.25; (d)6 = 25, Ac = 0.0; (€)0 = 625, Ac numbers which are equal te-{) and N — K) numbers which

Zeo'zog ég,e(i): 9923’9?: ;6(32'2812(59.) (0_)21391:3’ OA_SF (8'(1' (_h))g - gli are equal to£1). We recall thaK is also equal to theumber

(--)p= 0.5. ' ' ' of electronic eigenfunctions which flip sign yvhen tracing a
closed contour around one CIl or mordt is important to

the diagonal terms can, explicitly, be represented as emphasize that in case a contour does not surround any ClI (but

may surround one or more PIs) the valuekof= 0.
3) _ . P
D;¥=0; cosay, cosoyy j=n=m j=1,2,3 (32) VI. Topological Spin

This presentation shows, unambiguously, that@matrix, Before we continue, two matters have to be clarified in order

in the most general case, can have either threB)g in the to avoid confusion: (a) We distinguished between two types
diagonal or two {1)s and one+1). In the f_|rst case the contour _of LZ situations, which form (in two dimensions) the Jahn
does not surround any Cl, whereas in the second case ittg|ier C| and the RenneiTeller PI. (Thus, if the subset contains
surrounds either one or two Cls (a more general discussion N, Cls andNg Pls therN, the dimension of the SHS, = N;
regarding this .“geometrlcal" aspect will be given in section \') Rt Nk + 1.) The main difference between the two is that the

Before moving to the general case we would like to refer to pyg 4o not produce topological effects, and therefore, as far as
our choice of the rotation angles. It |s_weII notlce_d that they i subject is concerned, they can be ignored. Making this
differ from the ordinaryEuler angles, which are routinely used  gjstinction leads to the conclusion that the more relevant
whene\zer a general 3-dimensional orthogonal matrix is dis- magnitude to characterize topological effects, for a given SHS,
cussed: _In fa(_:t we could apply the Euler angles for t_hls PUrpose s not its dimensiom but N, the number of Cls. (b) In general
and get identical results f&x® (and forD®). The mainreason e may encounter more than one CI betwiemgiven states.
we prefer the “democratic” choice (with respect to the angles) Neyertheless, the above-defined numbbrwill not be affected
is that this set of angles can be extended to an arbitrary valueby that and will remain the same. In other worbl ¢ 1) stands
of N without any difficulty as will be done next. for the number of statethat form the Cls.

R ( .

The matrix A® "‘,"",Ibe W”tﬁe” as a product of el.ementary In the present treatment we assume, for simplicity, that any

rotation matrixes similar to the one given in eq 28: two (consecutive) states have one Cl only; the extension to the

Nl N more general case is relatively straightforward and will not affect
AN — HQ__(N)(y__) (33) any of the findings below.
D = So far we introduced three different integétsN;, andK.

As mentioned earlier, indeedl is a characteristic number of
where Q;M(y;) (see eq 27) is al x N matrix, which in its the SHS but is not relevant for topological effects, instsigd
(i) and {j) positions in the diagonal are the two relevant cosine as just mentioned, is a characteristic number of the SHS and
functions and the rest of th&N(— 2) elements are{1)’s, in relevant for topological effects, atd the number of eigenstates
the (j) and i) off-diagonal positions we have the two relevant that flip sign while the electronic manifold traces a closed loop,
+sine functions and the rest are zeros. From eq 33 it can beis relevant for topological effects but may vary from one path
seen that the number of matrixes contained in this product is to another and therefore is not, as such, a characteristic feature
N(N — 1)/2 and that this is also the number of independent for a given SHS.

yii-angles which are needed to describé\ar N unitary matrix Our next task is to derive all possibkevalues for a given
(we recall that the missini(N + 1)/2 conditions follow from N;. Let us first refer to a few special cases: It was shown above
the orthogonality and normality conditions). The matA&V) that whenN; = 1 we have two sign conversions, in the case

as presented in eq 33 is characterized by two important where the loop surrounds the &land no conversion of signs
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when the loop does not surround the #Thus the allowed
values ofK are either 2 or zero. The vallle= 1 is not allowed.

A similar inspection of the cadé; = 2 reveals thak, as before,

is either equal to 2 or zero (for details see Appendix Il). Thus
the valueK = 1 or 3 are not allowed.
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wheren is an integer (in order to guarantee that thex 22
diabatic potential be single-valued in configuration space). Thus
each (isolated) conical intersection can be considered as a “spin”.
Since in a given sub-Hilbert spady conical intersections are
encountered, we could define the spin,of this subspace as

From here we continue to the general case and prove the(Ny2). However, this definition may lead to more sign flips

following statement: In any molecular systéhtan attain only
evenintegers in the range

=N;j N;=2p

K=1{0.2, .K} K = (N, +1); Ny=2p+1 (39
wherep is an integer (in deriving eq 35 it is assumed that two
consecutive surfaces havat, most one conical intersection).

The proof is based on calculating the possible numbers o
(—21)s in the variou®-matrixes and recalling that this number
is equal to the number of sign-conversions as discussed in
Appendix II. Let us assume that a certain closed path yields a
set ofajj-angles which produce the numb€isee eq 34). Next
we consider a slightly different path, along which one of these
ajj’'s, sayos, changed its value from zero ta From eq 34 it
can be seen that only twb-matrix elements contain cas{),
namely,Dss and Dg. Now, if these two matrix elements were
following the first path, positive then changing; from 0— p
would produce two additionaH1)s, thus increasing to K +
2. If these two matrix elements were negative, this change would
causeK to decrease t& — 2, and if one of these elements
were positive and the other negative, then changigdrom 0
— p would not affectk. Thus, for allN (or N;), the variousK
valuesdiffer from each other by even integers only. Now since
any set oK’s contains also the valu¢ = 0 (the case when the
closed loop does not surround any CIs), this implies khaan
attain only even integers. The final result is the set of values as
presented in eq 34.

The fact that eigenfunctions may flip sign along closed

f

than we actually encounter (see next section). To make a
connection betweed and N; as well as with the “magnetic
components'™ of J and the number of the actual sign flips,
the spind has to be defined as

and, accordingly, the varioud-values will be defined as
K

For the seven lowest; values we have the following assign-
ments:

K;=N;; N, =2p
Ky=(N;+1); Nj=2p+1

1K,

= E 7 (386.)

M =J—K/2; whereK={0, 2, ..., (38b)

forN;=0 {J=0; M=0}

forN,=1  {J=Y,;, M=1, -}

forN,=2 {J=Y,; M="Y,-"}

forN;=3 {J=1, M=1,0,—-1}

forN;=4 {J=1, M=1,0,—-1}

forN,=5 {J=7 =30, ", =1, =1}

orN,=6 {J= 3/2; M =3, ", =, =31}
forN,=7 {J=2; M=21,0-1,-2 (38c)

contours hints at the possibility that these sign conversions are  The general formula and the individual cases as presented in

related to a kind of spin quantum number and in particular to

the above list indicate that indeed the number of conical

its magnetic components. The spin in quantum mechanics wasintersections in a given sub-Hilbert space and the numbers of

introduced because experiments indicated that individual par-
ticles are not completely identified in terms of their three spatial
coordinates® Here we encounter, to some extent, a similar
situation: A system of particles (electrons) in a given point in
CS is usually described in terms of its set of eigenfunctions.
This description is incomplete because the existence of Cls
causes the electronic manifold to be multivalued. For instance,
in the case of two (isolated) Cls, we may encounter at a given
point in CS four different sets of eigenfunctions (see Appendix

I):

(@) €1 €2 8oy (B) (=81, =85 8a)s (©) (G1,— 82— C0);

(d) (=81 &2 —E5) (36)

In case of three Cls we may have as many as eight different
sets of eigenfunctions, etc. Thus we have to refer to an additional
characterization of a given SHS. This characterization is related
to the numbeiN; of Cls and the associated possible number of
sign conversions due to different paths in CS, traced by the
electronic manifold.

In refs 1 and 2 we showed that in a two-state system the
nonadiabatic coupling ternr;,, has to be “quantized” in the
following way:

$ 7.4s) ds = 37)

possible sign flips within this sub-space are interrelated in a
similar way as a spid is related to its magnetic components
M. In other words each decoupled sub-Hilbert space is now
characterized by a spin quantum numblewhich connects
between the number of conical intersections in this system and
the topological effects which characterize it.

VII. Geometrical Approach

The closed contours that were discussed in previous sections
take place in multidimensional CSs. It will be difficult to get
some insight if, at this stage, we try to follow what happens
along these multidimensional contours. Therefore, in the present
article, we assume that all the Cls are located in a plane so that
all paths considered here are assumed to be in the same plane.
Another simplifying assumption is that the various Cls take place
at different points, so that no more than two states may cross at
a given point (the case where three or more states cross at a
given point will be discussed in the next section). Thus having
the two consecutive statgand { + 1), the two form the ClI to
be designated &S; (see Figure 3).

In the last two sections it was mentioned thayields the
number of eigenfunctions which change sign when the electronic
manifold traces certain closed paths. The situation is relatively
simple in case oN; = 1 whereK = 0, 2. We also discussed to
some extent the case df = 2 and found, again, that either
K = 2 or K = 0.2 However, we would like to be able to say
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Energy

R

Figure 3. Four interacting adiabatic surfaces presented in terms of
four adiabatic LandatZener-type curves. The poin@, j = 1, 2, 3,
stand for the three conical intersections.

more about that case. Here are encountered two Cls, namely,
C: and the G (see Figure 4a). In what followls; +1 is a contour
that surrounds only the correspondiGg

Moving the electronic manifold along the pdth, will change
the signs of¢; and {,, whereas moving it along the paif;
will change the sign§, ands. Next is examined the situation T
where a pathl'13, surrounds both Cand G. It turns out that
tracing that path will, again, cause a flip of sign of two
eigenfunctions only, because we already know thaiNfor 2,

K can be, at most, equal to 2. However, we shall analyze this
case and for that purpose we refer to Figure 4b in which it is @
shown that the contours that surrounds the two Cls can be
presented as the sulz = I'1» + I'>3 of two contours, each
surrounding one of the relevant Cls. Thus, surrounding the two
Cls will cause the sign of; to flip twice and therefore, T
altogether, its sign remains unchanged. Thus in cadg ef 2

we can have either no change of sign (when the path does not
surround any CI) or three cases where two different functions
change sign. It is important to mention that all four possibilities
are predicted by the products in eq 34 (for= 3 or N; = 2). _Figure 4. Four interacti_ng surfaces, the_three _points of c_onical
So far we presented a qualitative picture of what happens in intersections, and the various contours leading to sign conversions: the

. L contourslj+1 surrounding the respectiv@, j = 1, 2, 3, leading to the
the three-state system. A more mathematical analysis is 9iVeNgion conversions of thigh and the j( + 1)th eigenfunctions. The

in Appendix II1. contoursTj, surrounding the two (respective) conical intersections,
A somewhat different situation is encountered in the case of namely,C;andCj+1, j = 1, 2, leading to the sign conversions of fte
N, = 3 and therefore we shall briefly discuss it as well (see and the [ + 2)th eigenfunctions but leaving unchanged the sign of the

Figure 4). In this case we have three Cls. It is now obvious middle, { + 1), eigenfunction. Also shown are the contollfgy

S surrounding the respectiv@, j = 1, 2, 3, using partly dotted lines. It
that each contour of the tyg§+1, ] = 1, 2, 3, surrounds the .o pe seen thatj,, = 11 + [iaj2. The contour'ss surrounding

relevantC; (see Figure 4a) and will flip the signs of the two  the three conical intersections, leading to the sign conversions of the

fc)

relevant eigenfunctions. Surrounding wikfy,, j = 1, 2 the first and the fourth eigenfunctions but leaving unchanged the signs of
two consecutive Cls, namelg; andCj; (see Figure 4b), will the second and the third elgenfunctlons._ Based on (b), Wehla\ﬁe_
flip the signs of the two external eigenfunctions, namgjand I'2 + I'23+ I'sa. The contoull 1234 Surrounding the two external conical

: : ) intersections but not the middle one, leading to the sign conversions
j+2, but leave the sign ofj+1 unchanged. We have two such of all four eigenfunctions, .6, 24, &, Cs, £2) — (—C1, —Ca, —Ear —Ca).

cases-the first and the second Cls and the second and the third gaseq on (ab), we havBizz = I'1p + Tas
ones. Then we have a contdlif, that surrounds all three Cls

(see Figure 4c) and here, like in the previobls,= 2 case, VIII. Multidegeneracy Case
only the two external functions, nameb, and&4, change signs
but as for the two internal ones, namety,and s, their signs In the previous section it was emphasized that a case where

will remain unchanged. Finally we have the case where the three states degenerate at the same point is excluded from
contourI';234 surrounds @and G but not G (see Figure 4d). discussion. Here we would like to refer to that case (the case
In this case all four functions flip sign. Ae = 0; see Figures 2a,d,qg) in order to show that complications
We briefly summarize what we found in this particular case: can be expected. In what follows we restrict our treatment to a
We revealed six types of contours that led to sign changes oftristate degeneracy.
six (different) pairs of functions and one type that leads to a  The straightforward theory presented so far can be applied
sign conversion of four functions. Inspection of eq 33 shows here by considering the following situation: (1) The two lowest
that indeed we should have seven cases of flipped sign and onestates form a Cl, presented in termswm$(p), located at the
case where no sign change takes place (nho surrounding of anyorigin, namely, ato = 0. (2) The second and the third states
Cl). form a Cl, presented in terms of3(p,¢|po¢0), located afp =



Conical Intersection of Molecular Systems

po, @ = 0.2 (3) The tristate degeneracy is formed by letting
po — 0, namely,

M 724(0.91P0:P0) = T2(0.%) (39)

so that the two Cls coincide. Now if the contdtys in Figure

4b surrounds the two Cls then, following the discussion in the
previous section, th®-matrix will contain two ~1)s, which
are formed whenever one of the three topological angles
attains the value ofr and the other two are equal to zero (or

27). Inspection of Figures 2a,d,g shows for the tristate degen-

eracy case (namely, the case for whish = 0) that, indeed,
o2 andaps are equal to zero butiz = 7 (we remind the reader
that o = y;(¢ = 27)). Moreover, the fact thatiyz = 7, but

not the other two angles, indicates that the two functions that

flip sign are¢; and{z as was discussed in the previous section
see also Figure 4b (if, for instance, we had = 7, this would
imply that&, and ¢, flipped sign—see Figure 4a). Thus, so far,
the theory presented in previous sections and the calculation
performed much earliét yield identical results.

However, we also have other findings which are not so easily
understood. In refs 1 and 2 we studied a tristate model presente
in terms of the followingr-matrix:

0 t, O
="t 0 1y (40)
0 _t23 0
wheretj; i < j = 2, 3 are defined as follows:
ti(9) = ogyr(s); 1 <j=2,3 (41)

Here oj; are constants and(s) is a (vector) function of the
nuclear coordinates. It is noticed that in this case we again

S
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neither JahnaTeller Cls nor RennefTeller Pls, with their
respective neighbor states belonging to the next lower and the
upper SHSs, respectively (see Figure 1).

(b) The ADT and the topological matrixes were introduced
previously but here we not only discussed their derivations or
emphasized their importance but also referred to some new
features, in particular, the meaning of the nunietthe number
of (—1)s in theD-matrix’s diagonat-which is shown to be
identical to the number of functions that flip sign while the
electronic manifold is tracing a closed contour.

(c) A novel concept to assign electronic manifolds belonging
to a given SHS, namely, the topological spin, is introduced and
it is shown that the spin number is closely related to the number,
N;, of Cls in a given SHS (see eq 37a). Moreover, its
components are related to the possible number of sign conver-
sions,K, in this system (see eq 37hb).

(d) A geometrical description of the possible sign conversions
for a given SHS was presented and it is shown that this
description corresponds nicely with the results obtained from
the topological matrixD.

(e) The case of twalegenerateCls was discussed to some
Gextent. It was found that two different approachesch well
Justified—yield different values foK. These contradictory results
(that were not resolved within this article) seem to indicate that
a discontinuity is involved in the transition from the nonde-
generate to the degenerate situation.

Before completing this article we would like to refer briefly
to an example for a real system, namely, thélGystem. For
this system Mebel et al. recently studied the lower states of the
C,H molecule3® and employing the MOLPRO program pack-
agé’ they calculated the six relevant (Cartesian) nonadiabatic
coupling terms between the two following states?>X (12A")
and the ATT (22A" + 1?A"). They found that the corresponding
line integral in eq 25yields for a2 the value ofr when the
closed paths (of varying radii) surround the point of the ClI or

have a situation where the three surfaces form a common ClI atyields the value zero when they do not surround it or surround

one point. The correspondiri@rmatrix can be derived, directly,
by applying eq 10. It was established that, no matter which
contour is followed, thedD-matrix contains three+{1)s in the
diagonal. This situation can be attained if and only if the
following condition is fulfilled:

(0,7 + 0,)"°$ 7 ds = 2nr (42)

two of them. This system is now under further investigation to
reveal more Cls in particular between higher states, namely,
the second and the third, the third and the fourth, etc.

Appendix I. On the Trigonometric Structure of the
Adiabatic-to-Diabatic Matrix

For the present purposes the ADT matrix will be presented
(see eq 32) as the following product of rotation matrixes:

wheren is an integer. Thus in contrast to the previous case here

none of the electronic functions will ever flip sign no matter
which contour is followed.

Although the model presented here is of a very specialized
form (the two nonadiabatic coupling terms have an identical

N—1 N

A=[]1<%ew

Il

(1.1)

spatial dependence), still the fact that such contradictory resultswhere QW(y;) is anN x N matrix which in its {i) and ()

are obtained for the two situations could hint to the possibility

positions (in the diagonal) are the two relevant cosine functions

that in the transition process from the nondegenerate to the@nd the rest of theN — 2) elements are1)s, in the {{) and
degenerate situation, in eq 39, something is not continuous. The(ji) off-diagonal positions we have the two relevassine

conflicting results are not resolved within the present article.

IX. Conclusions

In this article new ideas are discussed regarding topological
effects due to several Cls belonging to a multistate system. Thes
are the main findings:

(a) In past publicatiorf$ we suggested to break-up the entire
electronic manifold into sub-Hilbert spaces (termed SHSs)
according to the strength of the nonadiabatic coupling terms
between the relevant states. This division is now refined by
demanding that the two border states of such a subset form

functions, and the rest are zeros. It is noticed that eq I.1 is written
in a somewhat different manner from eq 32. An example for
such a matrix is given in eq 27. In what follows we drop the
variabley;;, to simplify the notations. To continue we consider
first a general diagonal term of thee-matrix and later an odd

ediagonal term.

(1) Thekth diagonal term oA can be written as:

N
_ 12 13 )
A= z QPQ, % pq(u e QY (1.2)
1,0=p

g,eeit
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where the upper indices run over all possible matrixes included and designatingy(ss)) as the y-column that is derived by
in eq I.1. Among the various terms in eq 1.2 there is, for each employingA(sy), which is the matrixA calculated at = s
k, also one single term of the form following the integration of eq 7 along the (closed) contbur
namely,
Cu= kk(lZ)Qkk(lg)"' kk(UU)... kk(xy) (1.3)
which is the only term in eq 1.2 that contains (only) diagonal Als) =exp ( frds DA (11-3)
terms of the variou®-matrixes. This product is made up Nf
terms (one term from each matrix) which are either cosine
functions of the various angleg; or (+1)s but not sine . -
functions. In fact we can be more specific and it can be shown 1(s0) = A(s)E(sp) = exp (—frds DA(R)(s) (I14)
that Cy is of the form

Thus

If now A(sy) is chosen to be thenit matrix then the new

N . . . .
. adiabaticbasis set formed &= s is
Cu= I_l Qkk(kj) (1.4)
=k ~
‘ Hs) =exp CPdsDi(s) = D*Els)  (IL5)
or
N where we made use of eq 10. Sinbé is a diagonal matrix
C — 15 which containsl — K) (+1)s andK (—1)s in its diagonal, the
Kk = E!COS ) (1-5) column-vectory(so) is identical to the original column-vector,
! &(s0), except thaK of its components flipped their sign.
which proves our first assertion. Since along each path a different set of eigenfunctions may
(2) For this case we consider a geneddi-diagonal (kj) (or also may not) flip sign the column vector is not just double-
element which can be written as valued as in case ™ = 2 but multivalued. For instance, in the

case ofN = 3 the multivaluedness is 4. We may encounter the
following four different eigenvectors:

(a) @11 o 63); (b) (_élv =&, C3); (c) (Clr_éza_%);

o : . (d) (=81 &2 —C3) (11.6)
where, as before, the upper indices run over all possible matrixes

included in eq I.1. We claim that each term in (1.6) has to have |t is interesting to mention that the eigenvectet{,— o, —C3)
in its product at least one sine function. So let us assume thatcannot be formed.

this assertion is wrong and there exists a product of pure cosine  For a more complete discussion on this subject we refer the
functions (or ¢-1)s). Cosine functions or{1)s are located only  reader to section VI.

in the diagonal of each matrix and therefore the lowest indices

of each term in the product in eq 1.6 have to be equal. Making Appendix Ill. Quantitative Analysis of Possible Sign Flips

the two corresponding indices, of each term, equal, we get in a Three-State System

N
Ag= Y QP Q) k=] (16)
LA~

gent

Ay = (12) (13)"-Q (UU)___Q ). o i (1.7) _ In this Appendix we int(_and to prove matr_\ematically, employ-
J ek ki Kk ko ing the LI approach, that if a contour in a given plane surrounds
It is noticed that changing the indices in order to obtain a product WO CIs belonging to two different pairs of states, the two
of diagonal elements only is impossible, because among otheréigenfunctions that flip signs are the one that_ belongs to the
things the two indices of the last term have also to be made [OWest state and the one that belongs to the highest one.
equal. However, replacingby k contradicts our assumption Let us consider a case with three region as follows: In the

thatj = k first region, designated asi», is located the main portion of

' the interactionti,, between states 1 and 2 with the point of the
Appendix Il. On the Possible Sign Conversions and CI/PI atCy2. In the second region, designatedoas is located
Diagonal Elements of the Topological Matrix the main portion of the interactiotys, between states 2 and 3

) . ) _ _ . with the point of the CI/PI aCys. In addition, we assume a
The topological matrixD, is a diagonal matrix which contains  ¢yirg region,go, which is located between the two and is used

K (—=1)s (and N — K) (+1)s) in its diagonal. This number is 55 3 puffer zone (see Figure 5). Next is assumed that the intensity
dependent on the closed contodyalong whichD is calculated. of the interactions due to the components,gfin o1, and due

In this Appendix we show thaK is equal to the number of {5 +t,,in g, is practically zero. I the components of both,
electronic eigenfunctions that change sign when the electronic anqt,, may be of arbitrary magnitude but no CI/PI of any pair

manifold of the SHS moves alorig o _ of states is allowed to be there.
The adiabatic-to-diabatic transformation is carried out along  As mentioned above to prove our statement we consider the
a pathl’ and as a result the adiabatic basis etransforms to line integral
%, the corresponding diabatic basis set (see'gq 8
= A (11.1) A=A, § darA (I11.1)
A similar transformation will be applied to the complementary
nuclear wave functions (see eq 8). where the integration is carried out along a closed conkyur
Next we consider the poirgy on I, for which we have A is the ADT matrix to be calculated, the dot stands for a scalar

product, andr is the matrix of 3x 3 that contains the two
%(s) = A(S)E(sp) (1.2) nonadiabatic coupling terms, namely,
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(@)

Figure 5. Breaking up of a regiomw, that contains two Cls (at&
and Gg) and is defined in terms of a closed contdly into three
subregions. (a) The full regiom (b) The regiorv:,, which contains a
Cl at Gz and is defined by the closed contdi4,. (c) The regionoy,
which is defined by the closed contolis and does not contain any
Cl. (d) The regiono,s, which contains a Cl at £ and is defined by
the closed contouF.s. It can be seen thdt = I', + I'o + I

0 t, 0
(9 =["t20 1ty (111.2)
0 _t23 0

(It is noticed that the components bf; are assumed to be

negligibly smal—an assumption which is made for reasons of

convenience only.)

The integral in eq 1 will now be presented as a sum of three
integrals (for a detailed discussion on that subject: see ref 31),

namely,
A=A,— frudsrA - frods A — frzsds A (1.3)

Since there is no Cl in the buffer zons, the second integral
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0 140 00 O
79 ="tz 0 O] andryy()=|0 0 1y (111.8)
0 0 O 0 _t23 0
so that
T=1T,1 Ty (11.9)
We start with the first of egs Ill.4, namely,
A=G,—$ dstA (111.10)
ij

wherert;; replacess becauserys is identically zero inoi. The
solution and the correspondifymatrix, namely D1, are well-
known (see discussion in section V). Thus

-10 0
D,=|0 -10 (I11.11)
0 0 1

which implies (as already explained in the text) that the first
(lowest) and the second functions flip sign. In the same way it
can be shown thdD,3 is equal to

10 0
D,;=[0 -1 0 (I1.12)
00 -1

which shows that the second and the third (the highest)
eigenfunctions flip sign. Substituting eqgs 111.11 and 111.12 in
eq 7 yields forDj3 the result

(I11.13)

does not contribute and can be deleted so that we are left with ) )

the first and the third integrals. In general the calculation of In other words, surrounding the two Cls, indeed, leads to the
each integral is independent of the other; however, the two flip of sign of the first and the third eigenfunctions.
calculations have to yield the same result and therefore they

are dependent to some extent. Thus we do each calculationRéferences and Notes

separately but for different (yet unknown) boundary condi-

tions: the first integral fof51, as a boundary condition and the
second forG,3. ThusA will be calculated twice:
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Next are introduced the topological matrix@s D1,, andDas,
which are related té\ in the following way (see eq 22):
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