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In this article we discuss new ideas regarding the effect of conical intersections on a multielectronic adiabatic
manifold of eigenfunctions: (a) The conical intersections are used to break up the Hilbert space into sub-
Hilbert spaces by demanding that these subspaces do not have common conical intersections with each other
(in other words electronic states belonging to different subspaces do not form conical intersections). (b) A
new concept, the topological spin, is introduced; it is shown that its value is closely related to the number of
(Jahn-Teller) conical intersections in a given sub-Hilbert-space and that the values of the components are
related to the possible number of electronic eigenfunctions that flip sign while surrounding the conical
intersections. (c) A geometrical description for the above-mentioned sign conversions is introduced, and it is,
also, shown that this description agrees nicely with the results obtained from the topological matrix D. This
geometrical, qualitative-type picture is supported by a quantitative analysis based again on the line integral.

I. Introduction

In our recent publications was revealed1-3 an interesting
relation between the electronic nonadiabatic coupling terms and
the diabatic potentials formed via the adiabatic-to-diabatic
transformation (ADT). We found that if a certain electronic
manifold can be isolated from the full Hilbert space, then the
relevant ADT matrix, calculated along aclosed contour in
configuration space (CS), ‘returns to itself’ to guarantee that
resultingdiabaticpotentials are uniquely defined in every point
in CS. This finding, as derived for a general case, is interesting
as such, but surprising results are obtained for some simplified
models for which these findings led to ordinaryquantization
conditionswith respect to nonadiabatic coupling terms, of the
type introduced by Bohr and Sommerfeld almost a century ago.4

Once this fundamental relation was established we were able
to perform more detailed studies of topological effects within
molecular systems. In this respect topological effects are defined
as the number of electronic eigenfunctions that flip sign while
the electronic manifold traces a closed loop.

One of the main difficulties in molecular physics is to be
able to define rigorous sub-Hilbert spaces (SHS). There were
several attempts to do that, but the borders of these SHSs were,
rigorously, not satisfying.3,5,6 It is important to emphasize that
without being able to form finite SHSs, it is not only that the
study of topological effects will be harmed, but, in fact, the
entire field of molecular physics will be doomed. In the next
section we shall present a new approach which enables a
rigorous study of topological effects, but we think that this
approach can be a solution for other purposes as well.

In the study of (electronic) curve crossing problems one
distinguishes between a situation where two electronic curves,
Ej(R), j ) 1, 2, approach each other at a pointR ) R0 so that
the difference∆E(R ) R0) ) E2(R ) R0) - E1(R ) R0) = 0
and a situation where the two electronic curves interact so that
∆E(R) ∼ const (>0). The first case is usually treated by the

Landau-Zener (LZ) formula7-11 and the second is based on
the Demkov approach.12 It is well-known that whereas the LZ-
type interactions are strong enough to cause transitions between
two adiabatic states the Demkov-type interactions are usually
weak and affect the motion of the interacting molecular species
relatively slightly. The LZ situation is the one that becomes
the Jahn-Teller conical intersection (CI) in two dimensions.13-16

We shall also include the Renner-Teller parabolic intersection
(PI),17,18although it is characterized by two interacting potential
energy surfaces which behave quadratically (and not linearly
as in the LZ case) in the vicinity of the degeneracy point. The
distinction between the (extended) LZ situation and the Demkov
situation enables the rigorous construction of SHS as will be
presented in the following section.

For the sake of completeness, we present, in sections III and
IV, respectively the ADT19,20 matrix and the topological
matrix,1-3 which contains the topological information related
to a given closed contour.

Another subject that will be discussed to some extent is the
fact that the existence of CIs leads to a situation where
knowledge of the electronic manifold is not sufficient to
characterize a molecular system. The fact that CIs cause
electronic eigenfunctions to be multivalued makes it necessary
to determine the size of the relevant SHS and the number of
CIs it contains. This necessity leads to the introduction of a
topological spin which is proposed for a further assignment of
the molecular system. This subject is discussed in section V
and its geometrical interpretation in section VI. Section VII is
devoted to topological effects in case two CIs coincide, namely,
when three surfaces have their CIs at the same point. Conclu-
sions are given in the last section.

The subject of topological effects caused by electronic
nonadiabatic coupling is not new and goes back to studies by
Longuet-Higgins and his colleagues21,22 in particular to the
Herzberg-Longuet-Higgins 1975 paper.22 Although this subject
attracted some attention for about a decade,5,6 it became of minor
interest for chemists later on (although it attracted interest among
physicists due to Berry’s seminal 1984 paper).23 It was only† Part of the special issue “Aron Kuppermann Festschrift”.
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due to Kuppermann and his colleagues24,25 that this subject
earned, recently, renewed attention. At the beginning of the
1990s, Kupperman et al. published their state-to-state integral
and differential cross sections for the various triatom hydrogenic
reactive systems, presenting the nuclear wave functions in terms
of antiperiodic basis sets. By doing that they showed that some
of these cross sections, at certain energies, are governed by
topological effects.25

II. Construction of Sub-Hilbert Spaces

In our recent articles we suggested1-3 reconsidering the almost
well-established belief that the electronic manifold is an
unbreakable system of electronic adiabatic eigenfunctions which
form a full Hilbert space.26 In general it may not be easy to
contradict this claim because, indeed, almost every state interacts
with any other state to some extent. The question is only whether
we can distinguish between the intensity of the various
interactions. In other words: is there a criterion according to
which we can form subsets of functions that strongly interact
with each other but interact rather “weakly” with the states
belonging to other subsets? Hence it was suggested to probe
the nonadiabatic coupling terms with the aim of finding such a
criterion. It turns out that such a criterion can be assumed, based
on whether twoconsecutiVe states do, or do not, form a CI or
a PI (only consecutive states can form CIs and/or PIs). The two
types of intersections are characterized by the fact that the
nonadiabatic coupling terms, at the points of the intersections,
become infinite. (These points can be considered as the “black
holes” in molecular systems and it is mainly through these black
holes that electronic states “know” of each other.) Based on
what was said so far we shall, accordingly, form L SHSs of
varying sizesNP, P ) 1, ...,L.

Before we continue with the construction of the SHSs we
would like to make the following comment: Usually, when two
given states form CIs and/or PIs, one thinks of isolated points
in CS. In fact, CI/PIs are not isolated but form (finite or infinite)
seams which “cut” through the molecular CS. However, since
our studies are carried out for planes, these planes, usually,
contain isolated CI/PI points only.

We start by introducing the electronic nonadiabatic coupling
termsτij, defined as

whereúk, k ) i, j is thekth electronic adiabatic eigenfunction
and∇ is the grad operator (the bra and the ket notation is applied
for integration with respect to the electronic coordinates). In
what follows we distinguish between two kinds of nonadiabatic
coupling terms: (a) intra nonadiabatic coupling termsτij

(P) which
are formed between two eigenfunctions belonging to a given
SHS, namely, thePth SHS

and (b) inter nonadiabatic coupling termsτij
(P,Q) which are

formed between two eigenfunctions belonging to two different
SHSs, namely, thePth SHS and theQth SHS

ThePth SHS is defined through the following requirements:
Each pair of consecutive states, namely, thejth and the

(j + 1)th, belonging to thePth SHS, form, at least at one point
in CS, a CI14-16 or a PI.17,18

The size of thePth SHS is determined in such a way that the
lowest (the first) state and the highest (theNPth) state do not
form CIs or PIs with the their corresponding neighbors
belonging to the (P - 1)th SHS and the (P + 1)th SHS,
respectively (see Figure 1). In other words the two nonadiabatic
coupling terms

are assumed not to become singular in any point in CS.

III. Adiabatic-to-Diabatic Matrix

It was shown, employing projection operators,3 that the
Born-Oppenheimer treatment yields for each SHS the following
set of coupled adiabatic Schroedinger equations (SE):

where u(P) is a diagonal matrix which contains the above-
mentionedNP adiabaticpotential energy surfaces andΨ(P) is a
column vector which contains the relevant adiabatic nuclear
wave functionsψj(P); j ) 1, ...,NP (see also refs 5 and 6).

To study the topological features of thePth SHS, it is essential
first to obtain the adiabatic-to-diabatic transformation (ADT)
matrix A(P): Thus if Φ(P) is the column vector which contains
the diabatic nuclear wave functions (these are the solutions to
the corresponding diabatic SE), theA(P)-matrix is defined
through the relation

One can show, again employing projection operators, that for
each separate SHS, the correspondingA-matrix fulfills the
following first-order differential equation:3,19,20

whereτ is an antisymmetric matrix with the elements defined
in eq 2. In what follows we drop the subscriptP and discuss
one particular SHS of dimensionN. (Since many referees and
others questioned the existence of a solution for this equation
we presented in Appendix I of ref 38 a detailed discussion on
this subject. Still for the sake of completeness we say the
following: A valid solution for this equation can be derived

τij ) 〈úi|∇új〉 (1)

τij
(P) ) 〈úi

(P)|∇új
(P)〉; i, j ) 1, ...,NP (2)

τij
(P,Q) ) 〈úi

(P)|∇új
(Q)〉; i ) 1, ...,NP j ) 1, ...,NQ (3)

Figure 1. Schematic picture describing the three consecutive sub-
Hilbert spaces, namely, the (P - 1)th, thePth, and the (P + 1)th. The
dotted lines are separation lines.

τNP-11
(P-1,P) and τNP1

(P,P+1) (4)

- 1
2m

(∇ + τ(P))2Ψ(P) + (u(P) - E)Ψ(P) ) 0 (5)

Ψ(p) ) A(p)Φ(p) (6)

∇A + τA ) 0 (7)
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along a given contour, if and only if along this contour the
corresponding Curl condition19 is fulfilled. In all our theoretical
publications it was assumed that this condition is satisfied)

The more relevant feature of theA-matrix, for our purposes,
is the fact that it also transforms the electronic adiabatic basis
set,ú, to the electronic diabatic basis set,ø:19

In what follows we show that topological effects become
apparent through this transformation.

To solve eq 7 one has to assume a path (contour),Γ, and a
solution will be obtained for this particular path. Ifs ands0 are
two points on this path, we find forA(s) the result:1-3,27,28

where ds is a differential vector along the path, the dot stands
for a scalar product, andA(s0) is a given initial or boundary
value. The solution in eq 9 is well-defined along this particular
path as long as the elements of theτ-matrix are analytic
functions in the close vicinity of the path. Next we introduce
the D-matrix defined as1-3

which by its definition is only dependent on the pathΓ. As
will be shown, this matrix contains the topological features of
the system and was therefore is termed thetopologicalmatrix.3

The next subject is the diabatic potential matrixW(s) that
follows from the ADT given in eq 7: namely,

whereA† is the complex conjugate of A. The main feature that
will be used in the ongoing presentation is the uniqueness of
W(s). Thus it is assumed that at each point in CSW(s) attains
one single value, or, in other wordsW(s) is uniquely defined
throughout CS.

As a final point in this section and mainly for the sake of
completeness we shall introduce the diabatic SE. ReplacingΨ
in eq 5 byΦ (see eq 6) and recalling eq 7 yield the diabatic
SE:

whereW is a full potential matrix. It is important to emphasize
that eq 12 can be solved only whenW(s) is uniquelydefined
throughout CS.

IV. Topological Matrix

The D-matrix is defined in eq 7 and it is noticed that its
definition is based on a closed pathΓ. Thus let us consider
such a path, defined in terms of a continuous parameterλ, so
that the starting points0 of the path is atλ ) 0. Next we define
â as the value attained byλ once the path completes a full cycle
and returns to its starting point. Thus, for instance, in case of a
circle, λ is an angle andâ ) 2π.1,2

Having introduced these definitions we can now express our
assumption regarding the uniqueness ofW(s,s0) in the following
way: At each points0 in CS the diabatic potential matrixW(λ)
(≡W(s,s0)) has to fulfill the relation:

Following eq 11 this requirement implies that for every point
s0 we have

Next we introduce another transformation matrix,B, defined
as

which, for everys0 and a given pathΓ, connects betweenu(â)
andu(0):

TheB-matrix is, by definition, a unitary matrix (it is a product
of two unitary matrixes) and at this stage, except for being
dependent onΓ and, eventually, on s0, it is rather arbitrary. In
what follows we shall derive some features ofB.

Since the adiabatic eigenvalues are uniquely defined at each
point in CS, we haveu(0) ≡ u(â), and therefore eq 16 implies
the existence of the following commutation relation:

Equation 17 yields the following system of equations between
the adiabatic eigenvaluesuj(0) and theB-matrix elements:

Equation 18 has to hold at every arbitrary point s0

(≡λ ) 0) on the pathΓ and for an essential, arbitrary set of
nonzero adiabatic eigenvalues,uj(s0); j ) 1, ..., N. Due to the
arbitrariness ofs0 (and therefore also of the setu(s0)), eq 18
can be satisfied, if and only if, theB-matrix elements fulfill the
relation

or

Thus B is a diagonal matrix which contains in its diagonal
complex numbers whose norm is 1 (this derivation holds as
long as the adiabatic potentials are singled-valued, i.e., nonde-
generate along the pathΓ). In case of real eigenfunctions the
matrix B contains in its diagonal (+1)s and (-1)s. The number
of (-1)s is the main subject of the article.

Recalling eq 15, we obtain that

Equation 21 is similar to eq 9; it becomes identical if we close
the contour so that the upper limit of the integral becomess0

and identifyB with D as defined in eq 10. Therefore the features
just derived forB, namely, its being diagonal, having only (+1)s
and (-1)s in the diagonal, and in particular fulfilling eq 21,
will apply to D as well. In addition, based on its derivation in
the previous section, we know thatD depends only on the
contour along which it is calculated but does not depend on
any particular point on this contour. Rewriting eq 21 gives

It is noticed thatD transformsA(0) to A at the same point,
namely,A(â) as calculated from eq 7 (or eq 9) following the
integration along the same closed contour. However, sinceD

A†(0)u(0)A(0) ) A†(â)u(â)A(â) (14)

B ) A(â)A†(0) (15)

u(â) ) Bu(0)B† (16)

[B,u(0)] ) 0 (17)

∑
j)1

(Bkj*Bkj - δkj)uj(0) ) 0 (18)

Bkj*Bkj ) δkj; j, k e M (19)

Bkj ) δkj exp(iηk) (20)

A(â) ) BA(0) (21)

A(â) ) DA(0) (22)

ø ) Aú (8)

A(s) ) exp (-∫s0

s
ds‚τ)A(s0) (9)

D ) exp(-IΓ
ds‚τ) (10)

W(s) ) A†(s)u(s)A(s) (11)

- 1
2m

∇2Φ + (W - E)Φ ) 0 (12)

W(λ ) 0) ) W(λ ) â) (13)
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does not have to be the unit matrix and sinceλ ) 0 andλ ) â
describe the same point in CS, eq 22 implies thatA(s) is not
necessarily uniquely defined in CS. This, eventually, could be
an unpleasant situation, but since the diabatic potential matrix
W(s), for which the diabatic SE (see eq 12) has to be solved,
is uniquely defined in space, no difficulties are expected.

Our next task is to reveal the meaning of (-1)s in the diagonal
of matrix D. For that purpose we consider eq 8 and assume
that A(s0) is the unit matrix. Replacing, in eq 8, matrixA by
matrix D, namely,

yields the followingø-functions:

namely,D transforms the originalú-adiabatic eigenfunctions
back on themselves but with some of the functions flipping their
sign. It is to be remembered that diabatic eigenfunctions are
single valued in CS. Moreover, ifD containsK (-1)s in its
diagonal then, due to the transformation in eq 8′, K functions
flip sign. Making the electronic manifold trace different (closed)
contours several things can happen: (1) A different number of
functions may flip signs, or, in other words,K may vary. (2) It
also may happen, whetherK varies or not, that adifferentset
of functions may flip sign. Thus the conclusion is that altogether
the electronic manifold might be multivalued and the rate of
increase in the multivaluedness, as will be discussed later,
depends on the number of CIs.

The fact that an adiabatic electronic wave function flips its
sign while following a closed contour is called a topological
effect. Since theD-matrix contains the information regarding
the number of functions that flip sign, theD-matrix will be
defined as thetopological matrix.

V. Derivation of the Topological Matrix

To derive the topological matrix we first have to obtain the
ADT matrix, A, as introduced in eq 8. SinceA is a real unitary
matrix it can be expressed in terms of cosine and sine functions
of given angles.20,29,30We shall, first, briefly consider the two
special cases withN ) 2 and 3.

In case ofN ) 2 the matrixA2 takes the form

whereγ12, the ADT angle, can be shown to be19

DesignatingR12 as the value ofγ12 for a closed contour, namely,

the correspondingD(2) matrix becomes accordingly:

SinceD(2) has to be, for any closed contour, a diagonal matrix
with (+1)s and (-1)s, it is seen thatR12 ) nπ wheren is either
odd or even (or zero) and therefore the only two possibilities
for D(2) are as follows:

whereI is the unit matrix. The case wheren is an odd number
is recognized as the Jahn-Teller case.13-16 The reason is that
in this caseK ) 2, and therefore, according to our analysis in
the previous section, the two eigenfunctionsú1 andú2 flip signs
for this particular closed contour.22 From other numerous studies
it is well-known that this happens when the contour surrounds
a conical intersection (for a detailed study on this subject see
ref 31). In case the contour does not surround any CI32 or
surrounds a PI,9,10 n must be an even number (or zero) and no
eigenfunction flips its sign.

The case ofN ) 3 is somewhat more complicated because
the corresponding orthogonal matrix is expressed in terms of
three angles, namely,γ12, γ13, andγ23. This case was recently
studied by us33 in detail and here we will briefly repeat the main
points.

The matrixA(3) is presented as a product of three rotation
matrixes of the form

(the other two, namely,Q12
(3)(γ12) and Q23

(3)(γ23), are of a
similar structure with the respective cosine and the sine functions
at the appropriate positions) so thatA(3) takes the form

or, following the multiplication, the more explicit form

Here cij ) cos(γij) and sij ) sin(γij). The three angles are
obtained by solving the following three coupled first-order
differential equations, which follow from eq 7:20,29

These equations were integrated, for a model potential and for
fixed values of the radial coordinateF, along the angular interval
0 e æ e 2π. The æ-dependentγ’s, for various valuesF and
∆ε are presented in Figure 2.∆ε is the potential-energy shift
defined as the shift between the two original coupled adiabatic
states and a third state, at the origin, i.e.,F ) 0. In case∆ε )
0.0 all three states become degenerate at the origin. The relevant
D(3)-matrix is obtained fromA(3) by replacing, in eq 29, the
angleγij with Rij where

As is noticed from Figure 2 the values ofRij are either zero or
π. A brief analysis of eq 29, for these values ofRij, shows that
D(3) is a diagonal matrix with two (-1)s and one (+1) in the
diagonal. This result can be generalized in the following way:
Since theD(3)-matrix will become diagonal if and only if

D(2) ) (-1)n I (26)

Q13
(3)(γ13) ) (cosγ13 0 sin γ13

0 1 0
-sin γ13 0 cosγ13

) (27)

A(3) ) Q12
(3)Q23

(3)Q13
(3) (28)

A(3) ) (c12c13 - s12s23s13 s12s23 c12s13 + c12s23c13

-s12c13 - c12s23s13 c12c23 -s12s13 + c12s23c13

-c23s13 -s23 c23c13
)
(29)

∇γ12 ) -τ12 - tanγ23(-τ13 cosγ12 + τ23 sin γ12)

∇γ23 ) -(τ23 cosγ12 + τ13 sinγ12)

∇γ13 ) -(cosγ23)
-1(-τ13 cosγ12 + τ23 sin γ12) (30)

Rij. ) γij(æ ) 2π) (31)

Rij. ) nijπ (31′)

ø ) Dú (8′)

øj ) (új; j ) 1, ...,N (23)

A(2) ) (cosγ12 sin γ12

-sin γ12 cosγ12
) (24)

γ12 ) ∫s0

s
τ12(s′) ds′ (25)

R12 ) IΓ
τ12(s′) ds′ (25′)

D(2) ) (cosR12 sin R12

-sin R12 cosR12
) (24′)
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the diagonal terms can, explicitly, be represented as

This presentation shows, unambiguously, that theD(3)-matrix,
in the most general case, can have either three (+1)s in the
diagonal or two (-1)s and one (+1). In the first case the contour
does not surround any CI, whereas in the second case it
surrounds either one or two CIs (a more general discussion
regarding this “geometrical” aspect will be given in section VI).

Before moving to the general case we would like to refer to
our choice of the rotation angles. It is well noticed that they
differ from the ordinaryEuler angles, which are routinely used
whenever a general 3-dimensional orthogonal matrix is dis-
cussed.34 In fact we could apply the Euler angles for this purpose
and get identical results forA(3) (and forD(3)). The main reason
we prefer the “democratic” choice (with respect to the angles)
is that this set of angles can be extended to an arbitrary value
of N without any difficulty as will be done next.

The matrixA(N) will be written as a product of elementary
rotation matrixes similar to the one given in eq 28:

whereQij
(N)(γij) (see eq 27) is anN × N matrix, which in its

(ii ) and (jj ) positions in the diagonal are the two relevant cosine
functions and the rest of the (N - 2) elements are (+1)’s, in
the (ij ) and (ji ) off-diagonal positions we have the two relevant
(sine functions and the rest are zeros. From eq 33 it can be
seen that the number of matrixes contained in this product is
N(N - 1)/2 and that this is also the number of independent
γij-angles which are needed to describe anN × N unitary matrix
(we recall that the missingN(N + 1)/2 conditions follow from
the orthogonality and normality conditions). The matrixA(N)

as presented in eq 33 is characterized by two important

features: (a) Everydiagonalelement contains at least one term
which is a product of cosine functions only. (b) Every
off-diagonalelement is a summation of products of terms where
each product contains at least one sine function. For a rigorous
proof see Appendix I. These two features will lead to conditions
to be imposed on the variousγij-angles to ensure that the
topological matrix, D(N), is diagonal (and all its diagonal
elements are of norm 1) as discussed in the previous section.

To obtain theγij-angles one usually has to solve the relevant
first-order differential equations of the type given in eq 30. Next,
like before, theRij-angles are defined as theγij-angles at the
end of a closed loop. To obtain the matrixD(N) all one has to
do is to replace, in eq 33, the anglesγij by the corresponding
Rij-angles. SinceD(N) has to be adiagonalmatrix with (+1)s
and (-1)s in the diagonal, this can be achieved if and only if
all Rij-angles are multiples ofπ (see eq 31′). It is straightforward
to show that with this structure the elements ofD(N) become

wherenik are integers and we havenik ) nki. From eq 20 it is
noticed that along the diagonal ofD we may encounterK
numbers which are equal to (-1) and (N - K) numbers which
are equal to (+1). We recall thatK is also equal to thenumber
of electronic eigenfunctions which flip sign when tracing a
closed contour around one CI or more. It is important to
emphasize that in case a contour does not surround any CI (but
may surround one or more PIs) the value ofK ) 0.

VI. Topological Spin

Before we continue, two matters have to be clarified in order
to avoid confusion: (a) We distinguished between two types
of LZ situations, which form (in two dimensions) the Jahn-
Teller CI and the Renner-Teller PI. (Thus, if the subset contains
NJ CIs andNR PIs thenN, the dimension of the SHS, isN ) NJ

+ NR + 1.) The main difference between the two is that the
PIs do not produce topological effects, and therefore, as far as
this subject is concerned, they can be ignored. Making this
distinction leads to the conclusion that the more relevant
magnitude to characterize topological effects, for a given SHS,
is not its dimensionN but NJ, the number of CIs. (b) In general
one may encounter more than one CI betweentwogiven states.
Nevertheless, the above-defined number,NJ, will not be affected
by that and will remain the same. In other words (NJ + 1) stands
for the number of statesthat form the CIs.

In the present treatment we assume, for simplicity, that any
two (consecutive) states have one CI only; the extension to the
more general case is relatively straightforward and will not affect
any of the findings below.

So far we introduced three different integersN, NJ, andK.
As mentioned earlier, indeed,N is a characteristic number of
the SHS but is not relevant for topological effects, insteadNJ,
as just mentioned, is a characteristic number of the SHS and
relevant for topological effects, andK, the number of eigenstates
that flip sign while the electronic manifold traces a closed loop,
is relevant for topological effects but may vary from one path
to another and therefore is not, as such, a characteristic feature
for a given SHS.

Our next task is to derive all possibleK-values for a given
NJ. Let us first refer to a few special cases: It was shown above
that whenNJ ) 1 we have two sign conversions, in the case
where the loop surrounds the CI,22 and no conversion of signs

Figure 2. Three adiabatic-diabatic-transformation anglesγij(æ|F)
(obtained by solving eqs 30) as a functionæ calculated for different
values ofF (and∆ε). HereF is a radial coordinate with respect to the
assumed origin but serves as a parameter (not a variable) and all
calculations are done for fixedF-values. As for∆ε, it is the potential-
energy shift defined as the shift between the two original coupled
adiabatic states and a third state, at the origin, i.e.,F ) 0. (In the case
∆ε ) 0.0, all three states are degenerate at the origin.) For more
clarifications, see ref 33. (a)θ ) θ12, ∆ε ) 0.0; (b) θ ) θ12, ∆ε )
0.05; (c)θ ) θ12, ∆ε ) 0.25; (d)θ ) θ23, ∆ε ) 0.0; (e)θ ) θ23, ∆ε

) 0.05; (f) θ ) θ23, ∆ε ) 0.25; (g)θ ) θ13, ∆ε ) 0.0; (h) θ ) θ13,
∆ε ) 0.05; (i) θ ) θ13, ∆ε ) 0.25. (s) F ) 0.01; (- - -) F ) 0.1;
(- - -) F ) 0.5.

Dij
(3) ) δij cosRjn cosRjm; j * n * m; j ) 1, 2, 3 (32)

A(N) ) ∏
i)1

N-1

∏
j>i

N

Qij
(N)(γij) (33)

Dij
(N) ) δij∏

k*i

N

cosRik ) δij(-1)∑k*i
N nik; i ) 1, ...,N (34)
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when the loop does not surround the CI.32 Thus the allowed
values ofK are either 2 or zero. The valueK ) 1 is not allowed.
A similar inspection of the caseNJ ) 2 reveals thatK, as before,
is either equal to 2 or zero (for details see Appendix II). Thus
the valuesK ) 1 or 3 are not allowed.

From here we continue to the general case and prove the
following statement: In any molecular systemK can attain only
eVen integers in the range

wherep is an integer (in deriving eq 35 it is assumed that two
consecutive surfaces have,at most, one conical intersection).

The proof is based on calculating the possible numbers of
(-1)s in the variousD-matrixes and recalling that this number
is equal to the number of sign-conversions as discussed in
Appendix II. Let us assume that a certain closed path yields a
set ofRij-angles which produce the numberK (see eq 34). Next
we consider a slightly different path, along which one of these
Rij ’s, sayRst, changed its value from zero toπ. From eq 34 it
can be seen that only twoD-matrix elements contain cos(Rst),
namely,Dss andDtt. Now, if these two matrix elements were
following the first path, positive then changingRst from 0 f p
would produce two additional (-1)s, thus increasingK to K +
2. If these two matrix elements were negative, this change would
causeK to decrease toK - 2, and if one of these elements
were positive and the other negative, then changingRst from 0
f p would not affectK. Thus, for allN (or NJ), the variousK
valuesdiffer from each other by even integers only. Now since
any set ofK’s contains also the valueK ) 0 (the case when the
closed loop does not surround any CIs), this implies thatK can
attain only even integers. The final result is the set of values as
presented in eq 34.

The fact that eigenfunctions may flip sign along closed
contours hints at the possibility that these sign conversions are
related to a kind of spin quantum number and in particular to
its magnetic components. The spin in quantum mechanics was
introduced because experiments indicated that individual par-
ticles are not completely identified in terms of their three spatial
coordinates.35 Here we encounter, to some extent, a similar
situation: A system of particles (electrons) in a given point in
CS is usually described in terms of its set of eigenfunctions.
This description is incomplete because the existence of CIs
causes the electronic manifold to be multivalued. For instance,
in the case of two (isolated) CIs, we may encounter at a given
point in CS four different sets of eigenfunctions (see Appendix
II):

In case of three CIs we may have as many as eight different
sets of eigenfunctions, etc. Thus we have to refer to an additional
characterization of a given SHS. This characterization is related
to the numberNJ of CIs and the associated possible number of
sign conversions due to different paths in CS, traced by the
electronic manifold.

In refs 1 and 2 we showed that in a two-state system the
nonadiabatic coupling term,τ12, has to be “quantized” in the
following way:

where n is an integer (in order to guarantee that the 2× 2
diabatic potential be single-valued in configuration space). Thus
each (isolated) conical intersection can be considered as a “spin”.
Since in a given sub-Hilbert spaceNJ conical intersections are
encountered, we could define the spin,J, of this subspace as
(NJ/2). However, this definition may lead to more sign flips
than we actually encounter (see next section). To make a
connection betweenJ and NJ as well as with the “magnetic
components”M of J and the number of the actual sign flips,
the spinJ has to be defined as

and, accordingly, the variousM-values will be defined as

For the seven lowestNJ values we have the following assign-
ments:

The general formula and the individual cases as presented in
the above list indicate that indeed the number of conical
intersections in a given sub-Hilbert space and the numbers of
possible sign flips within this sub-space are interrelated in a
similar way as a spinJ is related to its magnetic components
M. In other words each decoupled sub-Hilbert space is now
characterized by a spin quantum numberJ which connects
between the number of conical intersections in this system and
the topological effects which characterize it.

VII. Geometrical Approach

The closed contours that were discussed in previous sections
take place in multidimensional CSs. It will be difficult to get
some insight if, at this stage, we try to follow what happens
along these multidimensional contours. Therefore, in the present
article, we assume that all the CIs are located in a plane so that
all paths considered here are assumed to be in the same plane.
Another simplifying assumption is that the various CIs take place
at different points, so that no more than two states may cross at
a given point (the case where three or more states cross at a
given point will be discussed in the next section). Thus having
the two consecutive statesj and (j + 1), the two form the CI to
be designated asCj (see Figure 3).

In the last two sections it was mentioned thatK yields the
number of eigenfunctions which change sign when the electronic
manifold traces certain closed paths. The situation is relatively
simple in case ofNJ ) 1 whereK ) 0, 2. We also discussed to
some extent the case ofNJ ) 2 and found, again, that either
K ) 2 or K ) 0.3 However, we would like to be able to say

J ) 1
2

KJ

2
; {KJ ) NJ; NJ ) 2p

KJ ) (NJ + 1); NJ ) 2p + 1 (38a)

M ) J - K/2; whereK ) {0, 2, ...,KJ} (38b)

for NJ ) 0 {J ) 0; M ) 0}

for NJ ) 1 {J ) 1/2; M ) 1/2, -1/2}

for NJ ) 2 {J ) 1/2; M ) 1/2, -1/2}

for NJ ) 3 {J ) 1; M ) 1, 0,-1}

for NJ ) 4 {J ) 1; M ) 1, 0,-1}

for NJ ) 5 {J ) 3/2; M ) 3/2,
1/2, -1/2, -3/2}

for NJ ) 6 {J ) 3/2; M ) 3/2,
1/2, -1/2, -3/2}

for NJ ) 7 {J ) 2; M ) 2, 1, 0,-1, -2} (38c)

K ) {0, 2, ...,KJ}{KJ ) NJ; NJ ) 2p
KJ ) (NJ + 1); NJ ) 2p + 1 (35)

(a) (ú1, ú2, ú3); (b) (-ú1, -ú2, ú3); (c) (ú1,-ú2,-ú3);

(d) (-ú1, ú2, -ú3) (36)

IΓ
τ12(s′) ds′ ) nπ (37)
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more about that case. Here are encountered two CIs, namely,
C1 and the C2 (see Figure 4a). In what followsΓjj+1 is a contour
that surrounds only the correspondingCj.

Moving the electronic manifold along the pathΓ12 will change
the signs ofú1 and ú2, whereas moving it along the pathΓ23

will change the signsú2 andú3. Next is examined the situation
where a path,Γ13, surrounds both C1 and C2. It turns out that
tracing that path will, again, cause a flip of sign of two
eigenfunctions only, because we already know that forNJ ) 2,
K can be, at most, equal to 2. However, we shall analyze this
case and for that purpose we refer to Figure 4b in which it is
shown that the contourΓ13 that surrounds the two CIs can be
presented as the sumΓ13 ) Γ12 + Γ23 of two contours, each
surrounding one of the relevant CIs. Thus, surrounding the two
CIs will cause the sign ofú2 to flip twice and therefore,
altogether, its sign remains unchanged. Thus in case ofNJ ) 2
we can have either no change of sign (when the path does not
surround any CI) or three cases where two different functions
change sign. It is important to mention that all four possibilities
are predicted by the products in eq 34 (forN ) 3 or NJ ) 2).
So far we presented a qualitative picture of what happens in
the three-state system. A more mathematical analysis is given
in Appendix III.

A somewhat different situation is encountered in the case of
NJ ) 3 and therefore we shall briefly discuss it as well (see
Figure 4). In this case we have three CIs. It is now obvious
that each contour of the typeΓjj+1, j ) 1, 2, 3, surrounds the
relevantCj (see Figure 4a) and will flip the signs of the two
relevant eigenfunctions. Surrounding withΓjj+2, j ) 1, 2 the
two consecutive CIs, namely,Cj andCj+1 (see Figure 4b), will
flip the signs of the two external eigenfunctions, namely,új and
új+2, but leave the sign ofúj+1 unchanged. We have two such
casessthe first and the second CIs and the second and the third
ones. Then we have a contourΓ14 that surrounds all three CIs
(see Figure 4c) and here, like in the previous,NJ ) 2 case,
only the two external functions, namely,ú1 andú4, change signs
but as for the two internal ones, namely,ú2 andú3, their signs
will remain unchanged. Finally we have the case where the
contourΓ1234 surrounds C1 and C3 but not C2 (see Figure 4d).
In this case all four functions flip sign.

We briefly summarize what we found in this particular case:
We revealed six types of contours that led to sign changes of
six (different) pairs of functions and one type that leads to a
sign conversion of four functions. Inspection of eq 33 shows
that indeed we should have seven cases of flipped sign and one
case where no sign change takes place (no surrounding of any
CI).

VIII. Multidegeneracy Case

In the previous section it was emphasized that a case where
three states degenerate at the same point is excluded from
discussion. Here we would like to refer to that case (the case
∆ε ) 0; see Figures 2a,d,g) in order to show that complications
can be expected. In what follows we restrict our treatment to a
tristate degeneracy.

The straightforward theory presented so far can be applied
here by considering the following situation: (1) The two lowest
states form a CI, presented in terms ofτ12(F), located at the
origin, namely, atF ) 0. (2) The second and the third states
form a CI, presented in terms ofτ23(F,æ|F0,æ0), located atF )

Figure 3. Four interacting adiabatic surfaces presented in terms of
four adiabatic Landau-Zener-type curves. The pointsCj, j ) 1, 2, 3,
stand for the three conical intersections.

Figure 4. Four interacting surfaces, the three points of conical
intersections, and the various contours leading to sign conversions: the
contoursΓjj+1 surrounding the respectiveCj, j ) 1, 2, 3, leading to the
sign conversions of thejth and the (j + 1)th eigenfunctions. The
contoursΓjj+2 surrounding the two (respective) conical intersections,
namely,Cj andCj+1, j ) 1, 2, leading to the sign conversions of thejth
and the (j + 2)th eigenfunctions but leaving unchanged the sign of the
middle, (j + 1), eigenfunction. Also shown are the contoursΓjj+1

surrounding the respectiveCj, j ) 1, 2, 3, using partly dotted lines. It
can be seen thatΓjj+2 ) Γjj+1 + Γj+1j+2. The contourΓ14 surrounding
the three conical intersections, leading to the sign conversions of the
first and the fourth eigenfunctions but leaving unchanged the signs of
the second and the third eigenfunctions. Based on (b), we haveΓ14 )
Γ12 + Γ23 + Γ34. The contourΓ1234surrounding the two external conical
intersections but not the middle one, leading to the sign conversions
of all four eigenfunctions, i.e., (ú1, ú2, ú3, ú4) f (-ú1, -ú2, -ú3, -ú4).
Based on (4b), we haveΓ1234 ) Γ12 + Γ34.
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F0, æ ) æ0.32 (3) The tristate degeneracy is formed by letting
F0 f 0, namely,

so that the two CIs coincide. Now if the contourΓ13 in Figure
4b surrounds the two CIs then, following the discussion in the
previous section, theD-matrix will contain two (-1)s, which
are formed whenever one of the three topological anglesRij

attains the value ofπ and the other two are equal to zero (or
2π). Inspection of Figures 2a,d,g shows for the tristate degen-
eracy case (namely, the case for which∆ε ) 0) that, indeed,
R12 andR23 are equal to zero butR13 ) π (we remind the reader
that Rij ) γij(æ ) 2π)). Moreover, the fact thatR13 ) π, but
not the other two angles, indicates that the two functions that
flip sign areú1 andú3 as was discussed in the previous sections
see also Figure 4b (if, for instance, we hadR12 ) π, this would
imply thatú1 andú2 flipped signssee Figure 4a). Thus, so far,
the theory presented in previous sections and the calculations
performed much earlier29 yield identical results.

However, we also have other findings which are not so easily
understood. In refs 1 and 2 we studied a tristate model presented
in terms of the followingτ-matrix:

wheretij; i < j ) 2, 3 are defined as follows:

Here σij are constants andτ(s) is a (vector) function of the
nuclear coordinatess. It is noticed that in this case we again
have a situation where the three surfaces form a common CI at
one point. The correspondingD-matrix can be derived, directly,
by applying eq 10. It was established that, no matter which
contour is followed, theD-matrix contains three (+1)s in the
diagonal. This situation can be attained if and only if the
following condition is fulfilled:

wheren is an integer. Thus in contrast to the previous case here
none of the electronic functions will ever flip sign no matter
which contour is followed.

Although the model presented here is of a very specialized
form (the two nonadiabatic coupling terms have an identical
spatial dependence), still the fact that such contradictory results
are obtained for the two situations could hint to the possibility
that in the transition process from the nondegenerate to the
degenerate situation, in eq 39, something is not continuous. The
conflicting results are not resolved within the present article.

IX. Conclusions

In this article new ideas are discussed regarding topological
effects due to several CIs belonging to a multistate system. These
are the main findings:

(a) In past publications3,31we suggested to break-up the entire
electronic manifold into sub-Hilbert spaces (termed SHSs)
according to the strength of the nonadiabatic coupling terms
between the relevant states. This division is now refined by
demanding that the two border states of such a subset form,

neither Jahn-Teller CIs nor Renner-Teller PIs, with their
respective neighbor states belonging to the next lower and the
upper SHSs, respectively (see Figure 1).

(b) The ADT and the topological matrixes were introduced
previously but here we not only discussed their derivations or
emphasized their importance but also referred to some new
features, in particular, the meaning of the numberKsthe number
of (-1)s in theD-matrix’s diagonalswhich is shown to be
identical to the number of functions that flip sign while the
electronic manifold is tracing a closed contour.

(c) A novel concept to assign electronic manifolds belonging
to a given SHS, namely, the topological spin, is introduced and
it is shown that the spin number is closely related to the number,
NJ, of CIs in a given SHS (see eq 37a). Moreover, its
components are related to the possible number of sign conver-
sions,K, in this system (see eq 37b).

(d) A geometrical description of the possible sign conversions
for a given SHS was presented and it is shown that this
description corresponds nicely with the results obtained from
the topological matrixD.

(e) The case of twodegenerateCIs was discussed to some
extent. It was found that two different approachesseach well
justifiedsyield different values forK. These contradictory results
(that were not resolved within this article) seem to indicate that
a discontinuity is involved in the transition from the nonde-
generate to the degenerate situation.

Before completing this article we would like to refer briefly
to an example for a real system, namely, the C2H system. For
this system Mebel et al. recently studied the lower states of the
C2H molecule,36 and employing the MOLPRO program pack-
age37 they calculated the six relevant (Cartesian) nonadiabatic
coupling terms between the two following states: X2Σ+ (12A′)
and the A2Π (22A′ + 12A′′). They found that the corresponding
line integral in eq 25′ yields for R12 the value ofπ when the
closed paths (of varying radii) surround the point of the CI or
yields the value zero when they do not surround it or surround
two of them. This system is now under further investigation to
reveal more CIs in particular between higher states, namely,
the second and the third, the third and the fourth, etc.

Appendix I. On the Trigonometric Structure of the
Adiabatic-to-Diabatic Matrix

For the present purposes the ADT matrix will be presented
(see eq 32) as the following product of rotation matrixes:

whereQ(ij )(γij) is an N × N matrix which in its (ii ) and (jj )
positions (in the diagonal) are the two relevant cosine functions
and the rest of the (N - 2) elements are (+1)s, in the (ij ) and
(ji ) off-diagonal positions we have the two relevant(sine
functions, and the rest are zeros. It is noticed that eq I.1 is written
in a somewhat different manner from eq 32. An example for
such a matrix is given in eq 27. In what follows we drop the
variableγij, to simplify the notations. To continue we consider
first a general diagonal term of theA-matrix and later an odd
diagonal term.

(1) Thekth diagonal term ofA can be written as:

A ) ∏
i)1

N-1

∏
j>i

N

Q(ij )(γij) (I.1)

Akk ) ∑
l,n‚‚‚p,
q,‚‚‚,t

N

Qkl
(12)Qln

(13)‚‚‚Qpq
(uV)‚‚‚Qtk

(xy) (I.2)

lim
F0f0

τ23(F,æ|F0,æ0) ) τ23(F,æ) (39)

τ ) (0 t12 0
-t12 0 t23

0 -t23 0 ) (40)

tij(s) ) σijτ(s); i < j ) 2, 3 (41)

(σ12
2 + σ23

2)1/2IΓ
τ ds ) 2nπ (42)
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where the upper indices run over all possible matrixes included
in eq I.1. Among the various terms in eq I.2 there is, for each
k, also one single term of the form

which is the only term in eq I.2 that contains (only) diagonal
terms of the variousQ-matrixes. This product is made up ofN
terms (one term from each matrix) which are either cosine
functions of the various anglesγij or (+1)s but not sine
functions. In fact we can be more specific and it can be shown
that Ckk is of the form

or

which proves our first assertion.
(2) For this case we consider a generaloff-diagonal (kj)

element which can be written as

where, as before, the upper indices run over all possible matrixes
included in eq I.1. We claim that each term in (I.6) has to have
in its product at least one sine function. So let us assume that
this assertion is wrong and there exists a product of pure cosine
functions (or (+1)s). Cosine functions or (+1)s are located only
in the diagonal of each matrix and therefore the lowest indices
of each term in the product in eq I.6 have to be equal. Making
the two corresponding indices, of each term, equal, we get

It is noticed that changing the indices in order to obtain a product
of diagonal elements only is impossible, because among other
things the two indices of the last term have also to be made
equal. However, replacingj by k contradicts our assumption
that j * k.

Appendix II. On the Possible Sign Conversions and
Diagonal Elements of the Topological Matrix

The topological matrix,D, is a diagonal matrix which contains
K (-1)s (and (N - K) (+1)s) in its diagonal. This number is
dependent on the closed contour,Γ, along whichD is calculated.
In this Appendix we show thatK is equal to the number of
electronic eigenfunctions that change sign when the electronic
manifold of the SHS moves alongΓ.

The adiabatic-to-diabatic transformation is carried out along
a pathΓ and as a result the adiabatic basis set,ú, transforms to
ø, the corresponding diabatic basis set (see eq 8′):

A similar transformation will be applied to the complementary
nuclear wave functions (see eq 8).

Next we consider the points0 on Γ, for which we have

and designatingø̃(s0) as the ø-column that is derived by
employing Ã(s0), which is the matrixA calculated ats ) s0

following the integration of eq 7 along the (closed) contourΓ,
namely,

Thus

If now A(s0) is chosen to be theunit matrix then the new
adiabaticbasis set formed ats ) s0 is

where we made use of eq 10. SinceD† is a diagonal matrix
which contains (N - K) (+1)s andK (-1)s in its diagonal, the
column-vectorø̃(s0) is identical to the original column-vector,
ú(s0), except thatK of its components flipped their sign.

Since along each path a different set of eigenfunctions may
(or also may not) flip sign the column vector is not just double-
valued as in case ofN ) 2 but multivalued. For instance, in the
case ofN ) 3 the multivaluedness is 4. We may encounter the
following four different eigenvectors:

It is interesting to mention that the eigenvector (-ú1,-ú2, -ú3)
cannot be formed.

For a more complete discussion on this subject we refer the
reader to section VI.

Appendix III. Quantitative Analysis of Possible Sign Flips
in a Three-State System

In this Appendix we intend to prove mathematically, employ-
ing the LI approach, that if a contour in a given plane surrounds
two CIs belonging to two different pairs of states, the two
eigenfunctions that flip signs are the one that belongs to the
lowest state and the one that belongs to the highest one.

Let us consider a case with three region as follows: In the
first region, designated asσ12, is located the main portion of
the interaction,t12, between states 1 and 2 with the point of the
CI/PI atC12. In the second region, designated asσ23, is located
the main portion of the interaction,t23, between states 2 and 3
with the point of the CI/PI atC23. In addition, we assume a
third region,σ0, which is located between the two and is used
as a buffer zone (see Figure 5). Next is assumed that the intensity
of the interactions due to the components oft23 in σ12 and due
to t12 in σ23 is practically zero. Inσ0 the components of botht12

andt23 may be of arbitrary magnitude but no CI/PI of any pair
of states is allowed to be there.

As mentioned above to prove our statement we consider the
line integral

where the integration is carried out along a closed contourΓ,
A is the ADT matrix to be calculated, the dot stands for a scalar
product, andτ is the matrix of 3× 3 that contains the two
nonadiabatic coupling terms, namely,

Ckk ) Qkk
(12)Qkk

(13)‚‚‚Qkk
(uV)‚‚‚Qkk

(xy) (I.3)

Ckk ) ∏
j*k

N

Qkk
(kj) (I.4)

Ckk ) ∏
j*k

N

cos (γjk) (I.5)

Akj ) ∑
l,n‚‚‚p,
q,‚‚‚,t

N

Qkl
(12)Qln

(13)‚‚‚Qpq
(uV)‚‚‚Qtj

(xy); k * j (I.6)

Akj ) Qkk
(12)Qkk

(13)‚‚‚Qkk
(uV)‚‚‚Qkj

(xy); k * j (I.7)

ø ) Aú (II.1)

ø(s0) ) A(s0)ú(s0) (II.2)

Ã(s0) ) exp (-IΓ
ds τ)A(s0) (II.3)

ø̃(s0) ) Ã(s0)ú(s0) ) exp (-IΓ
ds τ)A(s0)ú(s0) (II.4)

ø̃(s0) ) exp (-IΓ
ds τ)ú(s0) ) D*ú(s0) (II.5)

(a) (ú1, ú2, ú3); (b) (-ú1, -ú2, ú3); (c) (ú1,-ú2,-ú3);

(d) (-ú1, ú2, -ú3) (II.6)

A ) A0 - IΓ
da τA (III.1)
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(It is noticed that the components oft13 are assumed to be
negligibly smallsan assumption which is made for reasons of
convenience only.)

The integral in eq 1 will now be presented as a sum of three
integrals (for a detailed discussion on that subject: see ref 31),
namely,

Since there is no CI in the buffer zone,σ0, the second integral
does not contribute and can be deleted so that we are left with
the first and the third integrals. In general the calculation of
each integral is independent of the other; however, the two
calculations have to yield the same result and therefore they
are dependent to some extent. Thus we do each calculation
separately but for different (yet unknown) boundary condi-
tions: the first integral forG12 as a boundary condition and the
second forG23. ThusA will be calculated twice:

Next are introduced the topological matrixesD, D12, andD23,
which are related toA in the following way (see eq 22):

The three equalities can be fulfilled if and only if the two
G-matrixes, namely,G12 andG23, are chosen to be

Since allD-matrixes are diagonal the same applies toD12 and
D23, so thatD becomes

Our next task will be to obtainD12 andD23. For this sake we
consider the two partialτ-matrixes,τ12 andτ23

so that

We start with the first of eqs III.4, namely,

whereτ12 replacesτ becauseτ23 is identically zero inσ12. The
solution and the correspondingD-matrix, namely,D12 are well-
known (see discussion in section IV). Thus

which implies (as already explained in the text) that the first
(lowest) and the second functions flip sign. In the same way it
can be shown thatD23 is equal to

which shows that the second and the third (the highest)
eigenfunctions flip sign. Substituting eqs III.11 and III.12 in
eq 7 yields forD13 the result

In other words, surrounding the two CIs, indeed, leads to the
flip of sign of the first and the third eigenfunctions.
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Figure 5. Breaking up of a regionσ, that contains two CIs (at C12

and C23) and is defined in terms of a closed contourΓ, into three
subregions. (a) The full regionσ. (b) The regionσ12, which contains a
CI at C12 and is defined by the closed contourΓ12. (c) The regionσ0,
which is defined by the closed contourΓ0 and does not contain any
CI. (d) The regionσ23, which contains a CI at C23 and is defined by
the closed contourΓ23. It can be seen thatΓ ) Γ12 + Γ0 + Γ23.

τ(s) ) (0 t12 0
-t12 0 t23

0 -t23 0 ) (III.2)

A ) A0 - IΓ12
ds τA - IΓ0

ds τA - IΓ23
ds τA (III.3)

A ) Gij - IΓij
ds τA (III.4)

A ) DA0; A ) D12G12; A ) D23G23 (III.5)

G12 ) D23A0 and G23 ) D12A0 (III.6)

D ) D13 ) D12D23 (III.7)

τ12(s) ) (0 t12 0
-t12 0 0
0 0 0

) andτ23(s) ) (0 0 0
0 0 t23

0 -t23 0 ) (III.8)

τ ) τ12 + τ23 (III.9)

A ) G12 - IΓij
ds τ12A (III.10)

D12 ) (-1 0 0
0 -1 0
0 0 1) (III.11)

D23 ) (1 0 0
0 -1 0
0 0 -1) (III.12)

D13 ) (-1 0 0
0 1 0
0 0 -1) (III.13)
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